SKILLS AND KNOWLEDGE

Knowledge of:
- Algorithms (e.g., machine learning, statistics)
- Analytic Thinking
- Best Practices
- Big Data Analytics
- Communication
- Concurrency
- Critical Thinking
- Data Modeling
- Data Practices (e.g., HIPAA, SOX)
- Data Security and Privacy
- Data Standards
- Data Structures
- Databases (e.g., SQL, NoSQL)
- Discrete Logic
- Distributed Systems
- Distributed Computing Methods
- Domain/Field Knowledge (i.e., deep & broad)
- Math
- Metadata Standards
- Numerical Methods
- Performance Metrics
- Programming
- Proper Use of Data (e.g., governance)
- Rapidly Evolving Technology
- Landscape
- Relational Algebra
- Research Methodology
- Resource Allocation
- Scientific Methodology
- Statistical Analysis
- Unstructured Data (e.g., images, text)
- Visualization

BEHAVIORS

A successful big-data-enabled specialist is:
- A choreographer
- A connector of domains/data
- A data lover
- A forecaster
- A mentor
- A multi-tasker
- A problem solver
- A risk taker
- A seeker of patterns
- A storyteller
- A strategic thinker
- Aninker
- Collaborative
- Curious
- Detail oriented
- Ethical
- Flexible
- Inclusive
- Logical
- Open-minded
- Organized
- Passionate
- Patient
- Respectful
- Self-directed
- Skeptical
- Socially aware
- Willing to question

TRENDS/CONCERNS

Accelerating data growth leads to fragmentation of ad hoc solutions.
Big data field evolving from individuals to discipline-specific to transparent, collaborative, and driven.

Demand for big data-enabled specialists is rapidly increasing, with supply of individuals with these skills lagging.

Difficulty in discovering poorly collected data.

Exponential growth of data.

Fragmentation of practices and tools exceeds the capacity of training programs and workforce professional development.

Growth of government involvement in organizational data practices.

Increased need for real-time analytics for streaming data.

Increased risk to data security due to security breaches.

Industry tools stand in contrast to workforce skill needs.

Insufficient workforce to curate and clean data.

Insufficient workforce skilled in big data.

Lack of access to electric power to run data centers.

More complex statistical results/visualizations are increasingly present in media.

Need for ethical, safe harbor for data sharing.

Faster computing in developing nations creates new challenges.

Faster proliferation of diverse policies on governing data security.

Faster proliferation of practices and internal tools exceeds the capacity of training programs and workforce professional development.

Public interest in data literacy is growing.

Public understanding of data remains low.

Rapid drop in cost, along with rapid rise in accountability and ubiquity of cloud computing.

Rapid obsolescence of technology and tools.

The big-data-enabled specialist is transitioning from a technical role to a business-driven role.

The Internet of Things creates more data than existing capacity.

The role of the big-data-enabled specialist is not well defined in organizational culture.

Five years from now ...

Client base will move to smaller organizations using larger data sets to solve more localized problems.

Compute availability will be even the evening news.

Continuous stream in data but definition of the big data hype with a much greater focus on impact and ROI.

Data will be collected at even greater scales, yet software/tools/methods still lag behind.

Data and analytics will be provided more efficiently and transparently using new technologies and methods.

Development of global data retention standards (e.g., safe harbor, templates).

Increase in data-driven decision making.

Increase of data will increase solvability of crimes.

Less hype and frenzy, and more productivity.

Shift from documents/PDF to interactive data methods and visualizations to ensure reusability.

Using big data modeling and capture to change the mode of large tabular studies from local cases to global monitoring.

Panel

Kirk Borne

Professor of Astrophysics and Computational Science

George Mason University

Fairfax, Virginia

Randy Buccarelli

Programmer/Analyst

Scripps Institution of Oceanography

UC San Diego

La Jolla, California

Tim Chadwick

Principal Engineer

Dynamic Network Services, Inc.

Manchester, New Hampshire

Benjamin Davidson

Quantitative User Experience Researcher

Google

Boston, Massachusetts

Lucy Dronning

Associate Provost of Planning and Institutional Research

Columbia University

New York, New York

Ryan Kapaun

Law Enforcement Analyst

Eden Prairie Police Department

Eden Prairie, Minnesota

Juan Miguel Lavista Ferres

Principal Data Scientist

Bing/Microsoft

Seattle, Washington

Shannon Mcweeney

Head of Division of Bioinformatics and Computational Biology

Oregon Health & Science University

Portland, Oregon

Jay Parker

Earth Scientist

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California

Steve Ross

Consultant on Data Quality Control

Corporate Editor

Broadband Communities Magazine

Revere, Massachusetts

Karthik Shah

Principal Consultant

Strategy Solutions

Toronto, Canada

Oceans of Data Institute

Ruth Knahr

Director

Profile Facilitators

Joseph Ippolito

Joyce Malyn-Smith

Suggested Citation:

Learning Occupation: The big-data-enabled specialist is an individual who wrangles and analyzes large and/or complex data sets to enable new capabilities including discovery, decision support, and improved outcomes.

<table>
<thead>
<tr>
<th>DUTIES</th>
<th>TASKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Defines the Problem</td>
<td>1A. Identifies stakeholders
1B. Determines stakeholders' needs
1C. Articulates question
1D. Aligns study to organizational goals and objectives
1E. Translates question into research plan
1F. Designs experiment
1G. Develops deep domain knowledge of data source
1H. Discerns whether big data is needed to solve problem
1I. Identifies resources (e.g., experts, software)
1J. Performs gap analysis
1K. Assesses risk and bias involved in conducting study/project
1L. Communicates cost/risk of study to stakeholders</td>
</tr>
<tr>
<td>2. Wrangles Data</td>
<td>2A. Performs data exploration
2B. Identifies data
2C. Creates data dictionary
2D. Collects data
2E. Assesses the extent/methods to clean the data
2F. Maps data across heterogeneous sources
2G. Identifies outliers and anomalies
2H. Cleans data
2I. Transforms data
2J. Synthesizes data
2K. Defines new metrics/attributes based on accessible data
2L. Performs data visualization</td>
</tr>
<tr>
<td>3. Manages Data Resources</td>
<td>3A. Manages data life cycle
3B. Conducts capacity planning of resources
3C. Complies with legal obligations
3D. Applies ethical standards
3E. Identifies tools that may be needed for purchase or modification
3F. Protects data and results
3G. Determines access to data
3H. Designs ETL workflow
3I. Implements ETL workflow
3J. Stores data
3K. Upports data sources</td>
</tr>
<tr>
<td>4. Develops Methods and Tools</td>
<td>4A. Researches current methods/models
4B. Extends existing methods/models, if possible
4C. Selects tools/software/programming environment
4D. Develops new methods/models
4E. Runs simulations
4F. Iterates correctness and scalability of methods/models
4G. Validates methods/models with test cases
4H. Disseminates methods/models for peer review
4I. Documents methods/models
</td>
</tr>
<tr>
<td>5. Analyzes Data</td>
<td>5A. Develops analysis plan
5B. Applies methods and tools
5C. Conducts exploratory analysis (e.g., identifies anomalies, outliers, bias in sampling; visualizes)
5D. Evaluates results of the analysis (e.g., significance, effect, size)
5E. Estimates precision and accuracy of answer
5F. Determines level of confidence in results
5G. Compares results with other findings
5H. Answers the question (e.g., insights drawn from results)
5I. Submits preliminary findings for peer review
5J. Documents preliminary findings
</td>
</tr>
<tr>
<td>6. Communicates Findings</td>
<td>6A. Selects documentation media (e.g., dashboard, PowerPoint, e-mail)
6B. Compiles report
6C. Describes problem, method, and analysis
6D. Identifies limitations (e.g., data use, data application methods)
6E. Scopes data narrative based on time, depth, and method
6F. Prepares visualizations
6G. Guides interpretation
6H. Articulates conclusions
6I. Contrasts alternative approaches and past results
6J. Provides recommendations based on results
6K. Tells "data story" to convey insight (e.g., talks to CEO)
</td>
</tr>
<tr>
<td>7. Engages in Professional Development</td>
<td>7A. Seeks out mentors
7B. Stays current on emerging technologies, data types, and methods
7C. Attends relevant big data conferences
7D. Contributes new knowledge to the field
7E. Maintains professional library
7F. Participates in professional organizations
7G. Mentors others
7H. Engages in cross-discipline training
7I. Articulates value of big data activities to other departments/functions of organization
7J. Articulates evolving role of big data in supporting organizational goals</td>
</tr>
</tbody>
</table>