• The Next Generation Science Standards (NGSS) succeed in preparing students to use data in the real world—but could do even better, says the Oceans of Data Institute’s (ODI) new white paper. The ODI examined how well the data-usage expectations in the NGSS align with the “big data–enabled specialist” (BDES) occupational profile the organization compiled last year. A BDES analyzes large or complex data sets and uses the results to make discoveries or improve outcomes in various fields. The profile ODI created represents the knowledge and skills needed for these kinds of jobs.

The good news, states the white paper, is that the NGSS do emphasize skills necessary for using big data, such as developing an analysis plan and evaluating results. But the NGSS don’t stress three key areas: tasks related to data management, data quality, and data ethics. Read more at http://bit.ly/1l2GbOb.

• University of Wisconsin (UW)–Madison faculty have created virtual internships that help students develop metacognition, or “reflection in action.”

David Williamson Shaffer, a UW–Madison learning sciences professor, and researcher Naomi Chesler, a professor in the College of Engineering, found metacognition a common trait among successful professionals. Their digital internships simulate science, technology, engineering, and math (STEM) jobs and help students think and make decisions intuitively, as well as make that thinking visible for students and their potential employers. So far, the internships have placed students in hypothetical engineering jobs in biomedical and mechanical device design. More than 800 students at four U.S. universities, one U.S. high school, and the Munich University of Applied Sciences have completed a virtual internship.

“In many ways, businesses want the same thing as middle schools and high schools: tools to develop and assess complex thinking,” Shaffer says. The digital internships use Epistemic Network Analysis (ENA), which the researchers created to measure the development of complex thinking. ENA monitors changes in students’ thinking by examining their notebook entries and digital conversations with peers and mentors.

The internships also seem to encourage female participants’ interest in and commitment to STEM careers. “It’s extremely exciting that these virtual internships could have that effect and could do so at a national scale,” observes Chesler. The pair plans to create additional internships in medicine, architecture, and law. Learn more at http://bit.ly/1KkpXIt.

• A new science podcast can teach you something and make you laugh. Boston’s WBUR-FM’s new series, You’re the Expert, is hosted by comedian Chris Duffy. Each episode features a guest expert in a specialized field; guests have included a doctor who studies Neanderthal DNA and a researcher who examines bacteria from the New York Transit System. The series’ regular panel of comedians uses questions and games to try to guess the experts’ fields and why those fields are important.

The program highlights “some of the groundbreaking work being done by the brightest minds in science—research most people would never hear or know about otherwise,” says WBUR General Manager Charlie Kravetz. You’re the Expert airs on WBUR (90.9 FM) on Wednesdays at 9 p.m. and Saturdays at 6 p.m. Eastern Time. Listeners everywhere can also stream or download the podcast for free on iTunes. Learn more at www.thexpertsshow.com.

PHYSICS & PHYSICAL SCIENCE Courses at the University of Virginia

We offer online graduate professional development courses for teachers of grades 6-12. These courses may be taken individually or applied toward our Master of Arts in Physics Education, now online except for one 3½-week summer period at UVa. This degree in physics (not education) has some financial assistance.

Fall 2015 online courses include

Energy in the 21st Century (PHYS 6030) covers all facets of energy including fossil fuels, renewable, and nuclear and explains how generators, wind turbines, and photovoltaic cells actually work. Appropriate for grades 6-12 teachers (no calculus). (3 credits)

How Things Work I (PHYS 6050) considers everyday objects conceptually and focuses on motion, mechanics, fluids, heat, and sound. It includes videos of lectures, problem solutions, and enlightening demos and is appropriate for grades 6-12 teachers (no calculus). (3 credits)

Galileo & Einstein (PHYS 6090) traces the progress of science from the ancient Greeks to modern physics, including light and optics, electromagnetic waves, photons, relativity, and nuclear fission. It includes videos, slides, simulations, and many references. Appropriate for grades 6-12 teachers (no calculus). (3 credits)

Electricity & Magnetism III (PHYS 6263) is a home-lab based course with a kit, appropriate for grades 6-12 teachers. It focuses on charge, current, voltage, circuits and magnets (no calculus). (3 credits)

Classical Physics I (PHYS 6310) is a calculus-based intro course appropriate for grades 6-12 teachers. Topics include mechanics, fluids and thermodynamics. (3 credits)

For detailed course information visit www.k12.phys.virginia.edu or email PhysicsEducation@virginia.edu